ACM ICPC Manila 2017

Solution Sketches

Problem A: Statistricks

- Easy problem
- Take smallest and divide the last.

Problem A: Statistricks

- Ceiling division.
 - ((a + b 1) / b)
 - 0 (a / b) + (a % b != 0 ? 1 : 0)
 - o int(Math.ceil((double) a / b))
 - Don't do this!

Problem F: Yumamma II

- BFS
- Style 1: BFS with custom checking
- Style 2: Reduce to (r-1)(c-1) grid and normal BFS
 - Shrink Yumamma to 1×1
 - Expand obstacle to 2×2
- Be careful with diagonal moves!
- O(rc)

Karl Pilario Problem H: Aqua Man's Aqua Room

- Grid doesn't matter
 - Flatten
- Precompute volume per height
- On query: binary search
- O((rc + q) log rc)
- O(rc + q log rc)

Karl Pilario Problem H: Aqua Man's Aqua Room

- Offline approach: Sort, then two pointers
- O((rc + q) log (rc + q))

Problem L: Frickin' Heck

- Odd positions determine some type 1 moves.
 - Sweep from left to right.
 - Detect if impossible this way.
- All cells are now even, so possible.
- Improve: Turn 3 "frick" moves into 2 "heck" moves.
 Be greedy here, left to right
- O(n)

Tim Dumol

Problem G: Win

- Make a graph:
 - Add source "S" and sink "T"
 - Edges: $S \rightarrow W, W \rightarrow I, I \rightarrow N, N \rightarrow T$
 - 1 capacity at each node
- Set of moves \leftrightarrow network flow
- Max score = max flow
- Extract moves from flow

Kyle See

Problem E: Agents of Shield

- Reduce to complete graph with $\leq 2k+1$ nodes
 - Merge headquarters
 - Dijkstra from special nodes
- (2k+1)3^k states:
 - 2k+1 locations
 - 3 states per soap: initial/picked/dropped
- $O((2k+1)^23^k) = O(k^23^k) DP$

- cx + ey = d
 - $\circ \quad x+y \leq n$
 - x, y > 0
 - Handle last move properly!
- Attempt: Try all x. O(n).

- cx + ey = d
 - $\circ \quad x+y \leq n$
 - x, y > 0
 - Handle last move properly!
- Attempt: Try all x. O(n). **TLE.**
- Gotcha: "Impossible" must be answered quickly!

- Diophantine cx + ey = d.
- Impossible if **gcd(c,e)** doesn't divide d.

- Otherwise, find x, y such that cx + ey = d.
 - Extended Euclidean gcd
- All solutions are now (x qe', y + qc') for all q
- Select q to minimize x, check if $x + y \le n$.
- Do the same with y.
- If both fail, impossible.

Problem D: Weird Keyboard

- Slow: DP on Prefixes and LCS. $O(t^{2*}\Sigma s_i)$
- Fast: DP with state
 - Prefix of t
 - Prefix of some s_i
 - "Has taken" flag
- O(t*Σs_i)

Problem C: Bananas in Pajamas

- Always YES.
- Insight: Choose bases 4 and 8.
 - Six-bit blocks independent of each other!
- Example:
 - o 132 000 232 200 133 101 000 001 (base 4)
 - 36 00 56 40 37 21 00 01 (base 8)

Problem C: Bananas in Pajamas

- Build the number block by block.
- DP: Look at 6-bit blocks and their effects.
- Almost all (x_1, x_2, y_1, y_2) representable.
- Except (0,0,0,1) and related.
 - Just swap "4" and "8" if so!
- Also, need to slightly optimize representation.
 - Greedy works.

Payton Yao

Problem I: Rainbow Dash

- Eulerian Path iff connected and odd degree ≤ 2
 - Already connected
- Compute royal degrees.
- Remove royal edges.
- Connected components.

Payton Yao

Problem I: Rainbow Dash

- Need to fix odd nodes.
 - Can only pair up on same component
 - Odd components must be \leq 2, otherwise, impossible
- On each component, push to root.
 - "Will use" flag for each edge
 - Push means "push to parent and flip parent edge flag"
 - Bottom-up

Payton Yao

Problem I: Rainbow Dash

- Now all but the roots are even.
- If odd comps. = 0, can now find Eulerian cycle
- If odd comps. = 2, can now find Eulerian path
- O(h)

Problem K: Kebab

• $\mathbf{s}_{\mathbf{t}} \sin \boldsymbol{\phi}_{\mathbf{t}}$ represents:

- So, H(t) = "width" at time t.
- Thus, **answer(P) = answer(hull(P))**
- We reduce the problem to convex case!

- If convex, each side is lit half the time
- Hence, answer proportional to perimeter
- Thus, answer(hull(P)) = perimeter(hull(P))*C for some C. Just need to find C.

- Unit circle (or almost)
 - Width is 2, hence answer is 2.
 - \circ Perimeter is 2π
- Hence, $C^*(2\pi) = 2 \longrightarrow C = 1/\pi$

Problem K: Kebab

• Cheap solution: Extract C = $1/\pi$ from sample!

Problem M: Danielrad Cliff

- Reduce: upper-right convex hull
- Gotcha: Not always "flush" with a hull edge!
 - Example: (1,2), (2,1)
 - Example: (10,20), (20,9)

Problem M: Danielrad Cliff

- Reduce to (constrained) two-point case.
- Let f(x, y) = length
 when middle point is
 (x, y)

Problem M: Danielrad Cliff

• Goal: minimize f(x, y) on a triangular region

Problem M: Danielrad Cliff

- Goal: minimize f(x, y) on a triangular region
- Gradient descent on f(x, y)
- O(n² * (gradient descent))

Problem M: Danielrad Cliff

• Alternatively, minimize $F(\theta, \phi)$.

Problem M: Danielrad Cliff

• Minimize $F(\theta, \phi)$ on a **rectangular region**

$$F(\theta, \phi) = A \cdot \frac{\sin r}{\sin(a + r - \theta)} + B \cdot \frac{\sin s}{\sin(b + s - \phi)} + C \cdot \frac{\sin \theta + \sin \phi}{\sin(\theta + \phi)}$$
$$c \le \theta \le a$$
$$d \le \phi \le b$$

• This one's convex.

- Cyclic gray code with two determined values
- Impossible if either:
 - \circ (j i) and bitcount(b \oplus a) not same parity
 - (j i) mod n < bitcount(b \oplus a)
 - \circ (i − j) mod n < bitcount(b \oplus a)
- Otherwise, possible!

- Reduce to special case
 - XOR with "a" so arr[i] = 0 and $arr[j] = b \oplus a$.
 - Rotate so i := 0 and j := j i.
 - Rearrange bits so target $arr[j] = 2^m 1$
- Only m, j matters now.

- Modified "cyclic gray code" generation.
- Key property: Can rearrange bits.
- Key property: Can insert "reversed" anywhere!

000	>	000	000	000	000
001		001	001	001	100
011		011	011	101	110
010		010	111	100	111
		110	101	110	101
		111	100	111	001
		101	110	011	011
		100	010	010	010

- You can control when you can introduce a bit.
- Some edge cases.
- O(n2ⁿ)

Thank you!

- A. Statistricks Asuncion
- **B. Fashionista -** Atienza
- C. Bananas in Pajamas Atienza
- D. Weird Keyboard See
- E. Agents of Shield See
- F. Yumamma II See
- G. Win Dumol
- H. Aqua Man's Aqua Room Pilario
- I. Rainbow Dash Yao
- J. Bato Bato Split Asuncion
- K. Kebab Atienza
- L. Frickin' Heck Atienza
- M. Danielrad Cliff Manalastas

- Kevin Charles Atienza
 - Also chief judge
- Jared Guissmo Asuncion, M.Sc.
 - Also theme supervisor
- Kyle Stephen See
 - Also tester
- Payton Robin Yao, M.Comp.
 - Also tester
- Karl Ezra Pilario, M.Sc.
- Tim Joseph Dumol
- Dr. Pablo Manalastas